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1. INTRODUCTION 

R. DUNCAN LUCE AND DAVID M. GREEN 

During the period 1955-1970 many attempts were made to formulate 
precisely the basic mechanisms thought to underlie the processing of simple 
physical signals and to isolate some of the factors that affect subjects' re- 
sponses to such signals. The main impetus for this work was the application 
of the theory of signal detectability to psychophysics by Tanner and Swets 
(1954). This work is well known and is adequately summarized elsewhere 
(Green & Swets, 1966; Luce, 1963a; Swets, 1964), and we will not review 
the basic ideas again. Rather, we will report some of the later developments 
sparked by these early studies. 

Despite the diversity of extant models, all are able to predict certain 
basic features of the relevant data, and competing pairs of models tend 
to be about equally parsimonious as measured by the number of free 
parameters that one must estimate from data. Moreover, the predictions 
are often so similar that rather elaborate statistical tests are needed to 
ascertain which theory best accounts for a particular experiment. For those 
hoping to find a single, clearly superior theory, this chapter will prove dis- 
appointing. Our tentative conclusion is that among existing theories, differ- 
ent ones are appropriate to different situations. Or put another way, no 
current theory is really correct and which one better approximates the data 
varies with the experiment being analyzed. That state of affairs, though 
not ideal, would be acceptable if we were able to state clearly which experi- 
mental features serve to bound the region of reasonable application of a 
given theory. For example, we would like a rule such as: Threshold 
theories best handle discrimination of small changes in intensity when there 
is no noise background, whereas continuous theories are best when the 
signal is in noise. The sad fact is that no such rules have yet been 
formulated. 

Another criterion for the worth of a theory, in addition to its accuracy, 
is the class of experimental designs for which it makes significant predic- 
tions. A minimum requirement of any theory is that it unify data from 
most of the simple (one and two stimulus) psychophysical tasks. Practi- 
cally all current theories make predictions that can be cross validated in 
the simple yes-no (YN)  and forced-choice (FC) experiments and in the 
single stimulus design with a rating response.* By "cross validate" we mean 
that certain parameters which, on theoretical grounds, should be the same 
in different experimental designs, appear to be so. It is our particular bias 

* We abbreviatc certain recurrent terms. At  the first use of the term, we place 
the abbreviation in parentheses after it; thereafter we use the abbreviation. 
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that an adequate theory should apply to experimental situations in which 
the stimulus interval is not precisely marked as well as those in which it 
is. Experiments in which the signal can occur at any time mimic many 
practical detection and discrimination situations better than do the usual 
fixed interval (FI)  designs. To generate models that account for behavior 
in these so-called free-response designs and to relate their parameters to 
those from the discrete FI  tasks is a challenging and largely unsolved 
problem. 

Applying the criterion of generality usually involves an element of indi- 
vidual taste, because one theory generalizes easily in one direction, another 
theory in a different direction. For example, choice theory is readily stated 
for any finite number of stimuli and responses, but the connection between 
its parameters and physical properties of the stimuli is exceedingly vague. 
The theory of signal detectability (TSD) is easily couched in very stimulus- 
oriented terms, but its extension to more than two responses produces so 
many free parameters that prediction becomes virtually impossible. 

Let us consider further some of the problems that arise when we general- 
ize designs and theories from n = 2 to n > 2 stimuli. Recall that the stan- 
dard n = 2, YN design involves a noise background or null signal, 0 ,  a 
signal in noise, s, and a single observation interval in which one of these 
alternatives is presented. If we retain the single observation interval, then 
the natural way to generalize the YN design is to increase the number 
of signals that can be presented. We might do this by using several different 
frequencies or hues or by presenting several different levels of intensity. 
In contrast, we can keep only two signals, but increase the number of pos- 
sible stimuli. If we allow all possible combinations of two signals in k obser- 
vation intervals, there are 2k possible stimuli. Thus, in the most general 
two-alternative forced-choice (2AFC) task there are four possible ordered 
pairs-stimuli-+, a ) ,  ( 0 ,  s), ( 0 ,  a ) ,  and (s, s). Usually, the 
signal s is permitted to appear only once, which restricts the number of 
stimuli to the number of intervals. Under that restriction, a 3AFC design 
has the stimuli (s, 0 ,  @), ( 0 ,  s, 0 ) ,  and ( 0 ,  0 ,  s). Most empirical 
studies have imposed this restriction; however, Markowitz (1966) explored 
the most general case of 2AFC. 

The compass of such terms as detection, discrimination, and recognition 
for n > 2 is still confused. When there is one interval and n different non- 
null signals in one-to-one relation with n responses, we speak of the design 
as a recognition task except when n = 2 and the stimuli differ only in 
intensity, in which case it is called an intensity discrimination task. How- 
ever, if one of the n signals is replaced by the null signal 0 ,  we call it 
simultaneous recognition and detection except when n = 2 (one nonnull 
signal), in which case it is called a yes-no detection task. Any FC design 

having a signal in one interval and the null signal in the other n - 1 inter- 
vals is also called a detection design. For more details, see Luce (1963a) 
and Green and Swets (1966). There is, of course, an obvious sense in 
which all of these designs are asking the subject to recognize which of 
n possible stimulus presentations has been presented. Were the terminology 
not so deeply ingrained in the psychophysical literature, we might be 
tempted to reserve the use of "detection" for FR  designs concerned with 
the detection of a signal whose time of onset is uncertain, and refer to 
all of the FI  designs as recognition experiments. 

As the numbers n of stimuli and m of responses increase, programming 
problems and costs rise rapidly. Specifically, we must increase the number 
of trials by the factor n ( m  - 1 ) / 2  in order to have, on the average, a 
constant number of observations per independent estimated probability. 
Thus, considerable experimental selectiveness is required. Most of the 
studies that have been performed have been motivated by specific consider- 
ations. In addition, there are theoretical difficulties of two types. First, sev- 
eral viable two-stimuli theories exist and each of them can be generalized 
in a variety of ways (many of the logical possibilities have not yet been 
worked out). Moreover, all of these generalizations proliferate free 
parameters at a spectacular rate. Often postulates not needed in the two- 
stimulus case must be added in order to test the general model. Even so, 
a great number of parameters must be estimated. This leads to the second 
difficulty: how to estimate optimally the many parameters from data and 
how to compare the adequacy of theories with different numbers of param- 
eters? We have barely begun to face these problems. 

Our review begins with a general classification scheme. It is first used 
to organize various general theories for situations with n signals and m 
responses. Following this, we turn to the special cases of n = 2 stimuli 
which have received the most careful attention in the literature. We first 
deal with operating characteristics and psychometric functions on the as- 
sumption of stationary mechanisms. We next turn to the limited literature 
dealing with sequential effects in the data. And, finally, we turn to the 
relatively few attempts to deal with FR  data in which responses may occur 
at any time. 

11. CLASSIFICATION SCHEME 

Our classification of theories is based on guiding principles clearly evi- 
dent in all of the theories so far proposed. First, they all postulate a sensory 
or perceptual stage followed by a memory process that stores a hypothetical 
representation of the stimulus. Second, following the sensory-memory pro- 
cess is a decision stage, which operates on the representation of the stimu- 
lus. This two-stage structure is characteristic of the successful two-stimulus 
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theories, and it has been uniformly maintained in generalizing them. So 
we will class theories according to the two types of stages assumed. 

A. Sensory-Memory Processes 

The sensory-memory processes are of three general types, which pro- 
vides the first dimension of our classification system: 

Therc are assumed to bc k internal states of which onc is activated with 
some probability when a stimulus is presented. These states may or may 
not be ordered. Two special cases are of importance. 

(a )  k = n, in which case the states are identified with the stimuli; thesc 
are stin.zu1u.s generalizution models. 

(b)  k = m, in which case the states are identified with the possible 
responses (implicit responses). 

Notc that, without further assumptions, the conditional probabilities relat- 
ing states to stimuli constitute n(k - 1 ) free parameters. 

The internal states are assumed to form a continuum, usually in Eucli- 
dean space. In thc one-dimcnsional case, thc continuum is naturally 
ordcred. Usually, each signal is represented by some distribution over the 
continuum. Such assumed distributions constitute, in a sense, a continuum 
of free parameters unless there are strong a priori arguments for restricting 
them to a particular family. Frequently, though not always, the family is 
assumed to be normal, in which case the parameters are reduced to two, 
namely the mean and variance of each normal distribution. 

A signal is assumed to generate in time a train of pulses (neural, per- 
haps), which is described by some stochastic process. Most often, the pro- 
ccss is assumed to be Poisson-in which case the interarrival timcs are 
independent and exponentially distributed, and so it can be viewed as a 
special type of continuous state process; however, the decision processes 
associated with continuous state and stochastic sensory models usually 
differ somewhat. 

B. Response Processes 

This is only compatiblc with the finite state representation in which 
k = m; it assumes that when the sensory process indicates one response, 
there is some tendency (possibly, probability) of another response 
occurring. 

Response bias models postulate that among the possible responses or 
implicit responses, there are differential tendencies to employ one rather 
than another. The most widely used variant, called a choice model, assigns 
a weight b(r) > 0 to each response r and calculates the probability of 
choosing r out of a set R of possible responses as b (r) /z b ( x )  . 

Such models are compatible only with an ordered set of states; they 
are a natural generalization of TSD. Most often, the critcria are assumed 
to be fixed, but in some models they arc assumed to be distributed in some 
manner and in others to be adjusted systematically, according to a fixed 
learning model. 

111. THEORIES FOR FIXED-INTERVAL DESIGNS 

In talking about the various theories that have actually been developed 
in any detail, we will identify them by the names used by their authors 
followed by a symbol i-j, where i identifies the sensory and j the decision 
process in the preceding classification. No model is described fully, and 
little more than mention is made of experiments that seem especially rele- 
vant to it. When a model has been tested for n > 2, we discuss the test in 
this section. All of the experimental work for n = 2 is dealt with in the 
following sections. Little by way of systematic confrontation of alternative 
models has yet taken place for n > 2. 

A. Constant-Ratio Rule (CRR) (la-) 

Let p(rls) denote the typical entry of a confusion matrix when s is in 
the stimulus set S and r is in the response set R. The CRR asserts that 
if S' is a subset of S and R' is the response set corresponding to S', then 
the recognition experiment based on S' and R' has the confusion matrix 

The response or decision processes are of three types; they provide the 
second dimension of our classification system. 
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where s' is in S and r' is in R' (Clarke, 1957). Supporting experimental 
evidence can be found in Anderson (1959), Clarke (1957, 1960), Clarke 
and Anderson (1957), Conrad ( 1964), Egan (1957a,b), Hodge ( 1962, 
1967), Hodge, Crawford, and Piercy (1961 ) ; Hodge, Piercy, and Craw- 
ford (1961); Hodge and Pollack (1962), and Pollack and Decker 
(1960). Hodge and Pollack (1962) and Lee ( 1968) have suggested that 
the CRR may be a good empirical generalization when the stimuli are mul- 
tidimensional but is less accurate when they are unidimensional. Clearly, 
this rule is of limited generality, since by varying the presentation probabil- 
ities, payoffs, or instructions, p(r1s) can be affected [Nakatani (1968) and 
Shipley and Luce (1964) report such data]. Nonetheless, it suggests that 
the special case of a theory without response bias should predict the CRR 
or something close to it. 

B. Stimulus and Response Generalization (la-1) 

Shepard (1957) proposed a recognition model (m = n )  which has the 
matrix form PsJP,, where P,, is a stochastic matrix representing stimu- 
lus generalization, J is an experimenter assigned permutation matrix map- 
ping stimuli into responses, and P,, is a response generalization matrix. 
He suggested how to estimate P,, by running several experiments with 
different J's. In addition, he postulated that these probabilities of the stimu- 
lus matrix are exponentially related to an Euclidean distance, and he pro- 
vided supporting experimental evidence (Shepard, 1958a,b). Applications 
are given in Shepard (1961a,b). These ideas grew ultimately into Shepard's 
very fruitful nonmetric scaling procedure (Kruskal, 1964a,b; Shepard, 
1962a,b, 1963, 1966; see Carroll and Wish (Chapter 22) and Wish and 
Carroll (Chapter 13) of this volume), but they do not seem to have been 
pursued as a theory of recognition. 

C. Choice Theory (la-2) 

Shipley (1960) generalized to various experimental designs some of the 
psychophysical models in Luce (1959) ; a general statement of these models 
was given in Luce (1963a) ; and they were modified to account for experi- 
mental data by Shipley ( 1965). Consider an n = m experiment where 
response r i  corresponds to stimulus si. Assume there is a stimulus general- 
ization function Tii (not necessarily a probability measure) and a response 
bias function b, such that 

The scale values, though not the probabilities, can be written in matrix 
form as 

Note that in the unbiased case, i.e., b, is independent of j ,  this model 
predicts the CRR. To reduce the number of free parameters, it is assumed, 
as in Shepard's work, that -log v i j  acts like a distance (in particular, 
it is symmetric, i.e., rl,j = 1 7 , b ) ;  if the stimuli have components (as when 
there are several listening intervals), the squared distances add like orthog- 
onal components of an Euclidean spacc; and if the stimuli vary in only 
one dimension, distances are assumed to be additive. For complex stimuli, 
such as words, which account for much of the recognition data, none of 
these assumptions has much bite. Only by holding the stimuli fixed and 
manipulating the response bias by, say, varying the presentation probabil- 
ities, do the number of free parameters increase more slowly than the num- 
ber of independent data. However Broadbent (1967) has shown that the 
word frequency effect can be predicted simply by assuming 71, is related 
to the frequency of the word in the language, and that theories based on 
pure response bias, b, # b,(?,, = 1)  are inadequate. This paper is criti- 
cized by Catlin ( 1  969) and Nakatani (1 970), but defended by Treisman 
(1971). 

An experiment on lifted weights was reported by Shipley and Luce 
(1964). Both n = 2 and n = 3 data were collected and fit reasonably well 
by thc choice models using the same stimulus parameters where 
appropriatc. 

Using two tones and noise, Shipley (1965) investigated 12 different 
YN and FC detection, recognition, and simultaneous detection-and-recog- 
nition experiments. She was led to postulate that in the mixed case, a two- 
stage process is involvcd in which recognition of the stimulus precedes a 
detection decision; and when only detection is required in the uncertain 
frequency experiment the subject behaves as if he made covert recognition 
responses and simply ignored them later. These ideas given an adequate 
account of her data which, so far, have not been analyzed in detail in terms 
of any other theory. However, these choice models are surely wrong be- 
cause they predict symmetric ROC curves for both YN and 2AFC experi- 
ments, whereas empirically the former is usually asymmetric and the latter 
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appears to be linear (Atkinson & Kinchla, 1965; E. F. Shipley's data in 
Norman 1964a). 

See also the discussion of the uncertain frequency experiments in Section 
III,F on discriminal dispersion theory. 

D. Confusion-Choice Recognition Theory (lb-2) 

Nakatani (1968, 1972) proposed a theory in which the internal states 
are implicit responses that correspond to the possible responses. When 
stimulus si is presented, implicit response j occurs with probability aii.  
Thus, any subset T of the set M = (1, 2, . . . , m )  of implicit responses 
can occur. Thc probability that T occurs, callcd an cquivocation probabil- 
ity, is 

i n (1 - a i d .  
k i n T  k i n A f - T  

Given that a nonempty set T occurs, the decision process is assumed to 
select one response from T; If T = 0, then the process treats it as if 
T = M. It is postulated that there is a response bias vector (b,, b,, . . . , 
b,)  such that j in T is selected with probability b i /xk  i n  bk. Thus, sum- 
ming over all possible sets T such that T is a subset of M and j is in T yields 

p(rj13 = 2 n a,k n ( 1  - aik) ( b j /  2 b k ) .  
T  k i n  T  k i n M - T  k in T  

When m = n, the data suggest making the auxiliary assumption that the 
matrix A is symmetric, a,, - a,; .  With this, there are x n ( n  +- 1) + n - 
1 = :/,n(n + 3)  - 1 parameters, and so only for n 2 5 do the number of 
independent probabilities exceed the number of parameters. 

In his model, Nakatani views the probabilities a ; ,  as areas under the 
tails of normal distributions. By itself, this does not affect the fit to the 
data. However, in his 1971 paper, he used this as a way to estimate the 
similarity between the stimuli and responses and then used Kruskal's 
( 1964a,b) nonmetric multidimensional scaling technique to locate stimuli 
and responses as points in a Euclidean space. If that space has k dimen- 
sions, this reduces the number of parameters to (n  - 2 ) k  -t 1 stimulus 
ones (the arbitrariness of the origin and rotations of the space drops 
2k - 1 ) and n - 1 bias ones. 

Considering word-confusion data, Nakatani (1968) had considerable 
success with his modcl. Using thc spccial case where the matrix A has 
identical main diagonal entries and identical off-diagonal ones and no re- 
sponse bias, he accounted nicely for plots of the probability of a correct 
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response versus the number n of words, with S/N ratio as a parameter, 
from data of Miller, Heise and Lichten (1951 ), Pollack (1959) and 
Rubenstein and Pollack ( 1963). Again, assuming no response bias, he gave 
as good an account as the CRR of the data in Clarke (1957) and Egan 
(1957a). Dorfman (1967) reported a series of 2 X 2 recognition experi- 
ments using four presentation probabilities and thrce tachistoscopic times. 
The key prediction of Nakatani's theory in this case is that, for each time, 
the data points should lie on a linear ROC curve. The data do not reject 
this, although a symmetric curve (as in the choice theory) appears equally 
adequate. In a study of his own, Nakatani used six nonsense syllables at 
two S/N levels and three presentation distributions. One A matrix and 
three b vectors were estimated and they gave a satisfactory account of 
the data. In a second experiment, he chose three pairs of words with little 
confusion between pairs and a great deal within. Presentation distributions 
were chosen so that, in one casc, the absolute probability of a word re- 
mained about constant whereas its relative probability to its mate varied, 
and in the other the relative probability remained constant whereas the 
absolute one varied. The model predicts that articulation scores should 
change in the former case and not in the latter, and this was confirmed. 

Using Kruskal's nonmetric multidimensional scaling technique, Nakatani 
( 1971 ) analyzed confusion data for Munsell color chips (Shepard, 1958b) 
and for pure tones (Hodge & Pollack, 1962). The fits are impressive: The 
model accounts for 99.8% of the variance with 49 df and 99.2% with 
30 df, respectively. 

A direct confrontation of these models with the choice model, which 
with analogous assumptions has about the same number of parameters, 
has not been carried out. 

E. Threshold Theory (1-2, 3) 

Basically, all threshold models involve a discrete set of states, some 
probabilistic rule for their activation, and a response bias or a criterion 
response rule, or both. Many can be viewed as a discrete version of Thur- 
stone's ( 1959) discriminal dispersion model (scc Section III,F) . 

One body of literature, called neural quantum theory, is concerned with 
the shape of the distribution over states induced by the signal (BekCsy, 
1930; Stevens, Morgan, & Volkman, 1941; Corso, 1956); relevant data 
are discussed in Section IV,F. The other body of literature, much influ- 
enced by TSD, concerns the nature of the response criterion and the result- 
ing ROC curve in the two-stimulus case (for a summary, see Luce, 1963a, 
Krantz, 1969, and Sections IV,A,D, and F) . 

The onIy attempt to use the thcory for n > 2 was in connection with 



9. DETECTION, DISCRIMINATION, AND RECOGNITION 309 

Shipley's ( 1965) simultaneous detection-and-recognition data. Luce 
(1963a) pointed out that when one of two signals of different frequency 
was presented in a YN design and the subject was required to state which 
signal it was (independent of his detection response), there was no evi- 
dence of any residual recognition when he responded "no." Lindner 
(1968) carried out a systematic study in which the response bias was 
varied; his data suggested the opposite conclusion and rejected, at least, 
a two-state threshold model. 

F. Discriminal Dispersion Theory (2-3) 

The natural generalization of TSD to n > 2 was presented by Tanner 
(1956). Each signal relative to noise defines a likelihood ratio axis. These 
axes are thought of as directions in some multidimensional Euclidean 
space. Each signal is reprcscnted as a multinormal density in such a way 
that the likelihood ratio of one signal to another can be mapped to the 
straight line connecting the two signal points. Not only do the means and 
covariance matrices required to define the normal distributions introduce 
many parameters, but the response criteria of the n = 2 case generalize, 
even in the simplest generalization, to $<n(n - 1)  likelihood ratio criteria. 
As a result of this multiplicity of free parameters, this model has not been 
seriously pursued, and no useful generalization of TSD has been proposed. 
This remains the gravest weakness of TSD. 

Much earlier, the successive interval or categorical judgment generaliza- 
tion of Thurstone's ( 1959) discriminal dispersion model was proposed 
(see Torgerson, 1958). One continued to assume an abstract one-dimen- 
sional representation (definitely not likelihood ratio) of the stimuli in 
which each signal is described by a normal distribution, and the m re- 
sponses are represented as a partition of the continuum into m intervals. 
This model may be suitable for acoustic signals that vary only in intensity,but 
it is doubtful for word-recognition studies. If the normal distributions are cor- 
related, the model has :,$n(n - 1 ) + rt - 1 + n - 1 + m - 1 = )/, (n - 
I ) (n + 4)  + m - 1 free parameters. For references to the relevant litera- 
ture see Torgerson ( 1  958, p. 208) and Bock and Jones (1968, p. 21 3 ) .  

A careful, very general study of the discriminal dispersion model for 
both comparative and categorical judgments-called unidimensional 
strength theory-is given by Wicklegren ( 1968a). 

A special dispersion model was used by Green and Birdsall (1964) to 
reanalyze the data of Miller et al. ( 195 1 ). Essentially they assumed that 
the representation of a stimulus (word) is cross correlated with templates 
corresponding to the possible responses, that each correlation is a normally 
distributed random variable with unit variance and mean 0 except for the 
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correct one, which has mean d. It is assumed that the response is deter- 
mined by the largest of the correlations. It appeared that a single function 
rclated signal-to-noise ratio to d independent of the number of words on 
the list, except for thc 1000 word list. The distinctivc feature of this theory 
is that each stimulus is represented as a random point in an n-dimensional 
space, and the decision rule does not involve any free parameters. 

A key model-free phenomenon of the YN design when either of two 
signaIs (n = 3, in - 2 )  may be presented is that an appreciable decrement 
in detectability resuIts as compared with the single signal case (Gundy, 
1961; Shipley, 1965; Swets, Shipley, McKey, & Green, 1959; Tanner & 
Norman, 1954; Tanner, Swets, & Green, 1956; Veniar, 1958). Tanner 
et al. (1956) suggested that the hearing mechanism acts like a single filter 
that has to be shifted from one frcquency to another. Latcr Green (1958) 
proposed a multipIe filter model. Some subjects seem in accord with the 
one model, others with the other model. Shipley (1960) pointed out that 
a single stage, covert, choice model admits two solutions, which correspond 
closely to the two filter models. Swets and Sewall (1961) argued that a 
decision between the perceptual and response explanations can be made 
by comparing performance with a presignal presentation cue identifying 
the signal (if any) to that with a postsignaI presentation cue. If the phe- 
nomenon is perceptual, the precue should result in the same performance 
as for a single signal, whereas the postcuc should lcavc the decrement un- 
affected; if it is a response matter, both cues should return the performance 
to the level of a single signal. Swets and Sewall interpreted their data as 
supporting the perceptual hypothesis; actually neither cue was very effec- 
tive and the support to eithcr theory is most marginal. Thcir conclusion 
is at variance with Pollack (1959) in another context. Shiplcy's (1965) 
later two-stage, recognition-then-detection model does not allow for this 
differential prediction. 

Greenberg and Larkin ( 1968) and Greenberg ( 1969a,b) have explored 
a design in which the detectabilities of various probe signals are measured 
when they are introduced without prior warning to the subject who is ex- 
pecting only a single signal frequency. Detection is best at the expected 
signal frequency and decreases systematically at frequencies different from 
it. They failcd to observe any decrement in detection when either of two 
signals might be used on a YN trial, despite a highly asymmetric payoff 
matrix favoring one of the two signals (Larkin & Greenberg, 1970). Thus, 
they found no evidence for a "listening strategy." However, Penner 
(1970), using a 2AFC design with asymmetric reward over the various 
signal frequencics, found detection best at the most highly rewarded frc- 
quency. If all frequencics were equally rewardcd, then detection was the 
same at all frequencies. 
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G. Counter Theory (3-3) 

McGill ( 1967) and Siebert ( 1965 ) havc proposcd that thc scnsory sys- 
tcm convcrts signal cncrgy into a "neural" pulse train with a rate that in- 
creases with intensity. Morcover, as an idealization thcy assume that thc 
process is Poisson, i.e., the times between successive pulses are independent 
and exponentially distributed. Kiang's ( 1965) data on periphal auditory 
fibers supports the indcpcndence assumption; howcver, refractoriness and 
equilibration make the full Poisson assumption a considerable idealization. 
Ultimately, the exponential assumption will probably have to be replaced 
by a more descriptive one, but the mathematical complications will be con- 
siderable and, in all likelihood, more precise assumptions will have to be 
simulated on a computer. 

The basic decision process assumed in the FI design is that the pulses 
occurring during the observation interval are counted and this number is 
compared with a criterion (in YN design) or with another count (in 2AFC 
designs). Under the Poisson assumption, explicit expressions can be calcu- 
lated for all the relevant probabilities and, in general, it provides a good 
account of the data (McGill, 1967; McGill & Goldberg, 1968). Because 
the sum of a number of identically distributed random variables is approxi- 
mately normally distributed, the predictions of the counter models tend 
to be similar to those of TSD, but without requiring the likelihood 
interpretation. 

A modification of this theory to FR designs is outlined in Scction V1,D. 

IV. OPERATING CHARACTERISTICS AND PSYCHOMETRIC 
FUNCTIONS FOR FIXED-INTERVAL DESIGNS WITH 
TWO STIMULI 

As we have already noted, little has been done to compare one model 
against another for n > 2. For n = 2, the main comparison has been be- 
tween discrete and continuous sensory-memory states-this distinction 
served as the first component of our classificatory scheme. The issue is, 
basically, whether a sensory threshold exists in any measurable form. Some 
investigators have attempted to assess this question by examining the shape 
of the ROC curve. 

A. The Shape of the ROC Curve 

Civcn thc same decision process-usually, a response criterion one- 
different theorics about the sensory process predict qualitative diffcrences 

in the ROC curve f p ( Y s )  versus P ( Y I 0 )  as the response criterion is 
varied]. Thus, one is led to collect such data. More often than not, the 
shape exhibited by the data is found largely in the eye of the beholder. 
Any data point estimates a point on the ROC curve with variability appear- 
ing in both dimensions, and even binomial variability, which is at best a 
lower bound on experimental variability, is sufficient to obscure somewhat 
the shape of any empirically determined curve (see Green & Swets, 1966, 
pp. 402-403). The only sure generalization from these earlier studies is 
that the high threshold model is definitely wrong (Swets, 1961; Tanner 
& Swets, 1954). A large amount of data appear to be fit adequately by 
the two straight-line segments of low threshold theory, and there are also 
considerable data that appear to be better fit by continuous curves. Krantz 
(1969) has provided a careful critique of the attempts to discriminate these 
hypotheses. 

For data consistent with the Gaussian assumptions of TSD, the slope 
of the ROC curve on double probability paper is often interpreted as the 
ratio of the noise to the signal-plus-noise standard deviations. Wickelgren 
(1968b) and Nachmias (1968) have emphasized that this slope is also 
affected by criterion variability. Shipley (1970) found an apparent increase 
in criterion variance when the subject was asked to increase the number 
of response criteria. Markowitz and Swets (1 967), who found systematic 
differences in the shape of binary and rating ROC curves (see Section 
IV,D) although the detection indices (d's) were nearly the same, suggested 
that the slope is related to the a priori probability of the signal's occurrence. 
Schulman and Greenberg (1970) found similar effects. 

One safe generalization is that one seldom obtains data with a slope 
less than one (an exception being Shipley, 1970).* Thus, either the signal 
distribution is seldom less variable than the noise distribution or the crite- 
rion variability is so large compared with the variance of the sensory distri- 
butions that such changes cannot be observed. 

B. Fitting a Theoretical ROC Cuwe to Data Points 

A persistent problem in evaluating the shape of the ROC curve is the 
estimation of parameters. .Recent work has improved this somewhat. 

* Dr. Angus Craig (personal communication, 1974) has reanalyzed vigilance 
data reported by Colquhoun and Baddeley (1967) and by Colquhoun, Blake, and 
Edwards (1968) and has found that somewhat more than half of the individual 
ROC curves have slopes greater than one. Of course, the procedure for these 
experiments is somewhat different from the usual YN one, from which we made 
our "safe" generalization; in particular, the probability of a signal recurring is 
low and the subject does not make a response of no signal. 
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When we have only two data points, we can reformulate the question 
as a test of the following null hypothesis: Given a particular theory, the 
two points lie on the same theoretical curve. Gourevitch and Galanter 
(1967) gave a parametric analysis for large samples from normal distribu- 
tions with equal variances. They presented an approximate estimate for 
the asymptotic variance of d'. Smith (1969) provided an approximate esti- 
mate for the variance of the criterion p associated with a single data point. 

With three or more data points, the null hypothesis approach is awkward 
and is replaced by attempts to estimate the best fitting member of some 
family of ROC curves and to provide a measure of goodness of fit. The 
most general case so far studied (Abrahamson & Levitt, 1969) is the loca- 
tion-scale family where, for some probability density g, the noise and signal 
densities are given by 

1 x 1 x - d  
g!a(x) = ; (;) and g s ( ~ ) = - g ( T ) .  us 

The hit and false alarm probabilities are given by 

If G is the distribution function of g and if we define 

f = G m l ( l  - p p )  and 7 = G-'(I - p ~ ) ,  

then the (G-transformed) ROC curve is given by the linear relation 

f = (ff./u)7 + d. 

The problem is to estimate aS/g and d. This is not a conventional linear 
regression because both 6 and 7 are estimated, and the joint distribution 
varies with (L7 7). Madansky ( 1  959) has given one general approximate 
treatment of such problems. Within the context of YN and rating-scale 
designs, Abrahamson and Levitt (1969) used numerical iteration to solve 
the resulting maximum likelihood (ML) equations. By Monte Carlo 
methods, they showed that Madansky's approximation is virtually identical 
to the ML method. They defined a goodness-of-fit statistic which is, asymp- 
totically, related to a X2 variable. These results generalize earlier ones for 
the logistic and normal distributions applied to YN and rating methods 
(Ogilvie & Creelman, 1968; Dorfman & Alf, 1968, 1969; the latter is a 
specialization of Schonemann & Tucker's 1967 analysis of the Thurstonian 
model for successive intervals with unequal variances). 

Various threshold models (Luce, 1963b; Norman, 1963, 1964a; Krantz, 
1969) suggest that the ROC curve may be composed of several linear 
pieces. No statistical treatment has been given for these cases. The heart 

of the difficulty is in deciding which data points belong with each linear 
piece. 

C. Sampling Variability of the Area under the ROC Curve 

Green (1964; Green & Swets, 1966, p. 47) showed that the area under 
the YN ROC curve (as a proportion A  of the unit square) equals the 
percentage of correct responses in the unbiased 2AFC model, and that 
this result is independent of the form of the assumed distributions. Pollack 
and Norman ( 1964) have provided a reasonable scheme for estimating 
A  given only a single point on the ROC curve; see also Norman (1964b). 
Pollack, Norman, and Galanter ( 1964) have illustrated its use in a recogni- 
tion memory experiment. Becausc of the nonparamctric (although not 
model-free) charactcr of Green's result, much interest is shown in A as 
a general unidimensional measure of sensitivity. Thcrefore, it is important 
to know something about its sampling variability. Green and Moses ( 1966) 
assumed a binomial sampling distribution, in which case the variance is 
A ( l  - A ) / N .  This is not obviously true, and no one has yet workcd out 
the actual sampling distribution for, say, the ML member of a location- 
scale family or even of a logistic or normal family. The only detailed study 
(Pollack & Hsieh, 1969) is a Monte Carlo exploration of A under stcp 
functions fitted to "data" points generated from normal, uniform, and expo- 
nential families. The relation between A  and its standard deviation is 
roughly independent of the family and is slightly less than the binomial 
standard deviation. Among other things, they showed that correlations in 
thc samples had little effect on this relationship. 

D. Rating Operating Characteristics 

Egan, Schulman, and Greenberg (1959) were the first to compare the 
operating characteristics determined from binary (YN) responses and 
ratings responses in which the subject indicated his confidence about the 
presence of the signal by choosing among a limited (-6) number of cate- 
gories. They found good agreement between the two methods, and their 
results were replicated by Emmerich (1968). Markowitz and Swets 
(1967), however, found systematic differences between the methods as 
the a priori probability of the signals was varied. 

Impatient with the slow accumulation of information in both of these 
methods, Watson, Rilling, and Bourbon (1964) pioneered the use of the 
rating method with a very large number of response categories. Using an 
auditory single-interval detection design in which the signal was a pure 
tone partially masked by noise, they asked subjects to position a movable 
rod to indicate their degree of confidence about the signal's presence. The 
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possible positions of the rod were categorized into 31 distinct "ratings," 
and the operating characteristics produced by the procedure have been 
widely cited. The curves are remarkably smooth (as they must be, since 
they are cumulative in character) and the slope appears to change 
continuously. 

Unfortunately, these plots have tended to be somewhat overinterprcted 
in attempts to decide whether the internal sensory states are continuous 
or discrete. The crux of the problem is that specific assumptions about 
the responsc process must be made in order to draw unambiguous infer- 
ences about the sensory mechanism from the data. The central issue is 
the assumption one makes about the decision or response process, in par- 
ticular about the mapping relating responses to the internal sensory states. 

It is generally admitted that the same internal state may lead to different 
responses-in effect, this is an assumption that some generalization takes 
place. There is considerable disagreement about the extent of this general- 
ization. Clearly, the more responses that a singlc sensory state elicits, the 
less certain are the inferences made from responses to internal states. Sen- 
sory psychologists have tended to assume that extreme rating responses 
indicate, unambiguously, extreme detection states, whcreas only the 
medium rating responses may be caused by either sensory state. 

If such a view is adopted, a two-state threshold model predicts a rating 
operating characteristic that begins and ends with straight-line segments 
and is curved only in the middle portion, where medium ratings are en- 
countered. This mapping between detection states and responses is clearly 
what Watson et al. (1964) had in mind in their original paper, and Nach- 
mias and Steinman (1963) and Green and Moscs (1966) assumed it ex- 
plicitly. Broadbent (1966) and Larkin (1965) challenged this assumption, 
and the alternative hypothesis was defended by Wickelgren (1968b). 
Krantz (1969) has prcsented the most complete statement of the alterna- 
tive view. 

The key assumption of that alternative view is, of course, that any sen- 
sory state can lead to any response. The rationale for this position is simplc 
and compelling. Suppose an obscrver has, in fact, only two sensory states, 
but that other, nonsensory, internal states affect his disposition toward a 
certain response. Then these other internal states can bias the rating re- 
sponses and producc high confidence responses, even when the signal is un- 
detected, or low ones when it is detected. So long as these other variables 
are partially independent of the sensory states, any sensory state may, with 
some probability, elicit one of the possible responses. We might think of 
these nonsensory variables as attention21 factors. 

If R,, i = 1, . . . , r, denote the possible ratings and D and D the two 
states, we let ~ , ( i )  = p ( R , D )  and r rn ( i )  = ~ ( ~ , l b ) .  Let us make the 

following two assumptions about these parameters. First, they are sto- 
chastic, i.e., uD(i),  ua(i) 2 0 and ziuD(i) = z ~ a ( i )  = 1 .  Second, uD(i)/ 
uD(i) is nonincreasing as i moves from 1 to r, i.e., there is more likelihood 
that a high rating response is chosen in the presence of a detect state than 
a nondetect state. Thus the effect of these nonsensory states coupled with 
only two sensory states determines the relation between the ratio ~ , ( i ) /  
~ ~ ( i )  and the response emitted. 

From these assumptions and letting q(s)  = p(D1s) and q ( 0 )  = 

p(Dl@), the kth point on the ROC has coordinates 

Thus the kth point can be considered as the sum of two vectors, lying along 
the major diagonal one with coordinates (Z i u ~  ( i ) ,  Ziua(i) ) and the other 
with coordinates [ q ( s )  zi[uD(i) - u ~ ( i ) ] ,  q ( 0 )  Zi[u,(i) - ~ 6 ( i ) ] ] .  The 
term ;[uD(i) - aa(i)] is a scaler which ranges between 0 and 3 (because 
of the stochastic assumptions). 

Observe that the slope between successive points is simply 

and so it is monotonic decreasing because uD(i)/ua(i) never increases. 
The limiting slope is [ l  - q(s)] / [ l  - q ( 0 ) l .  

There is no intention of fitting data using all of these parameters, but 
it does suggest a plausible account of how a two-state theory can predict 
the smooth, apparently continuous, data of rating experiments. Krantz's 
assumptions (especially as expressed here) are, in effect, a multistate 
theory if one considers the two sensory states and the several nonsensory 
states needed to provide the different values for the ratio uD(i) /m( i ) .  

There is, in fact, little difference between the way continuous theory 
and multistate theory handle the comparison between YN and rating data. 
Note that if one starts by assuming two equal variance Gaussian distribu- 
tions and a number of fixed response criteria. then replacing D by s and 

by 0 means that ~ , ( i )  = p(R,Js)  and ufi(i) = p(Ri  1 0 ) .  The parame- 
ters are clearly stochastic and the assumption that mD(i)/u3(i) = 
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p (Ri 1s) / p  (Ri 1 0 )  is nonincreasing follows simply from the likelihood 
ratio being monotonic in the equal variance Gaussian case. About the 
only observation damaging to either theory would be rating operating 
characteristics that lie above (i.e., include more area) than the YN ROC 
curves. 

E. Latency Operating Characteristics 

Another recent devclopment has been the attempt to use latency mea- 
sures as a means of determining the observer's confidence in his response, 
and from these data to construct curves claimed to be analogous to the 
rating operating characteristics. In this method, the subject is seldom in- 
formed that his response time is being measured, and no emphasis on speed 
is ever given-latencies greater than 1 sec are common. Moreover, the 
results of these experiments are not used, as are the reaction-time data 
discussed in Section VI,E, to make infercnces concerning stochastic delays 
within the sensory processing. Rather, the idea is that latency of a response 
is an index of the confidence of the subject concerning his response. Thc 
basic argument, as expressed by Norman and Wickelgren (1969), is that 
if the response is quick, then the subject is probably sure; if it is slow, 
he is probably uncertain. 

Consider a simple YN task of the type described earlier. Associated 
with each cell of the response matrix is a corresponding latency distribution. 
For example, let E S y  be the latency associated with a "yes" response given 
that the signal was present on that trial. Similarly, 1 % ~  is the latency 
associated with a false alarm, E @ N  the latency of a correct rejection, and 
I,, the latency of a false "no." Note that there is no obvious dependency 
among the latencies as there was among the probabilities in the stimulus- 
response matrix. Over many trials, the four different latency distributions 
can be estimated. Two treatments of these data have been suggested, one 
by Carterette, Friedman, and Cosmides (1965) (CFC) and the other by 
Norman and Wickelgren (1969) (NW). A more recent example of such 
curves is in Katz (1970). Because they are different, yet related, and 
because the techniques are new, we explain both in some detail. 

The CFC method constructs two curves from the data. One is con- 
structed from the latencies of the "yes" responses by passing a temporal 
criterion through the two Y distributions: 

Y I ( ~ )  = P ( L Y  2 k )  N ( L Y  > k ) / N s y ,  O < k < m ;  
x , ( k )  = P( lOy  > k )  g N ( l % y  2 k ) / N % y ,  0 5 k < m ;  

where N(lSy > k)  is the number of latencies equal to or exceeding k and 
N,, is the total number of such latencies. Thus, both y and x range from 

0 to 1 and the curve is monotonic increasing. There is no mathematica1 
necessity that y > x and, in fact, some empirica1 data have shown the 
reverse order over the entire range of k. 

Another curve is constructed in an analogous fashion from the negative 
responses, namely, 

In the NW scheme, these two curves are composed into a single graph 
by rescaling the two CFC curves as follows: 

Bl (k )  = P(LY  2 h-)p(YIs)  = y i ( k ) p ( Y I s )  
versus 

a l ( k )  = P(InY 2 k ) p ( Y l n )  = x l ( k ) p ( Y l s )  
and 

B ~ ( c )  = ~ ( ~ 1 s )  + [l - p(Y l s ) ]P( l , u  c )  
= p(k' ls)  + [1 - p(Yls) lYz(c)  

versus 

Although the two curves are related and are designed to analyze similar 
kinds of data, neither has any great theoretical rationale. They are both 
simply ways of presenting data and it  is as pointless to argue whether one 
treatment is superior to the other as it is to argue that the median is a 
better measure of central tendency than the mean. Eithcr curve may be 
useful in certain circumstances. It  is clear that theoretical work is needed 
to reveal their exact relation to other, more traditional ROC curves. On 
the face of it, there is no apparcnt relation. 

F. Psychometric Functions 

By a "psychometric function" we mean a plot of some measurc of detect- 
ability against physical signal intcnsity, I ( s ) .  The examination of such func- 
tions, as a source of information about the naturc of thc scnsory system, 
has a long and venerable history (Boring, 1942). A popular approach is 
to deduce the shape of the function from a consideration of physical fluctu- 
ations of the stimulus. In these theories the observcr is treated as having 
either no threshold or onc that is small compared with thc fluctuations 
in the stimulus. The physical quantum theory in vision (Hecht, Schlaer, 
& Pirenne, 1942; Cornsweet, 1970) or the "ideal" detector theories in audi- 
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tion (Green & McGill, 1970; Green & Swets, 1966; Jeffress, 1964; Pfafflin 
& Mathews, 1962) are examples of this approach. 

Wc will not consider this approach furthcr at this time, but rather we 
will emphasize that potentially the psychometric function can be used to 
try to determine whether or not the observer possesses a threshold and 
to estimate its size. The problem is what dependent variable one should 
use in determining the detectability of the signal. The classic one is p(Y(s) .  
Since TSD and our awareness of ROC curves, there has been a temptation 
to plot d' versus signal-to-noise ratio, especially sincc a special case of 
TSD predicts that d' is proportional to ( E / N , ) l 1 2 .  The objection to the 
first measure is that it is highly affected by the subject's location on the 
ROC curve and that location may very well not be independent of Z(s). 
The objection to the latter measure is that it is special to a particular 
theory. 

An alternative proposal is to use A ,  the area under the YN ROC curve, 
which obviously is independent of response criterion and which, as was 
already noted, is equal in a broad class of models to the percentage correct 
p(C) in the (symmetric) 2AFC design. Closely related is the proposal 
to use 

A = p(Il(s, a ) )  - p(lI(a9 4 1 9  

which has the following advantage. If the presentation probabilities are 
equal in the 2AFC design, a = 2p(C) - 1 = 2A - I, and if they are 
not equal, all of thc threshold thcories predict that A should be independent 
of the response bias or criterion (which is equivalent to saying that the 
2AFC ROC curve is a straight line with slope 1 ) .  The surprising fact is 
that even though the advantages of using p(C) = A have been known 
since at least 1964 and of A since 1963, we do not know of any plots of 
these functions against signal intensity. 

It was carly recognized that some appropriatc psychometric function 
should be ablc to decidc between a threshold and a continuous theory. 
In particular, as Krantz (1969) later emphasized, such a test is best made 
at low signal levels, where threshold theories imply that there is no detec- 
tion whatsoever. In practice, the attempts to see this (as well as other fea- 
tures expcctcd in the psychometric function) havc been bascd upon plots of 
p(Y1s) versus I ( s )  for pure tones, with no artificial noise in the back- 
ground, and for light flashes. BCkCsy (1930) and later Stevens, Morgan, 
and Volkmann (1941 ) reported such functions as favoring a particular 
threshold theory known as neural quantum theory. Blackwcll (1963) drew 
the oppositc conclusion for light. A survcy article by Corso (1 956), sum- 
marizing many studics, was inconclusive. Luce (1963b) pointed out that 
the ROC literature suggests that there can be serious and complex biasing 

of such functions; Larkin and Norman ( 1964) and Norman ( 1963) dem- 
onstrated this empirically. These studies made clear that threshold theories 
could account for a wide range of shapes of psychometric functions arising 
from YN designs, and so these functions could not possibly decide between 
the two classes of thcorics. Thc conclusion does not, howcver, apply to 
A,  and so there is much to recommend a careful 2AFC study in which 
A is determined as a function of I(s) .  

G. Efficient Estimates of Single Psychometric Points 

Wit11 the advcnt of sequential analyscs in statistics (Wald, 1947; Weth- 
erill, 1966), thc carly introduction of scquential or tracking methods into 
psychophysics (Bekesy, 1947) and the widespread availability of digital 
computers for on-line control of psychophysical experiments, adaptive con- 
trol of stimulus presentation schedules has become increasingly common. 
The goal is a procedure to estimate the physical stimulus required to 
achieve a preassigned response probability. The procedure is to be efficient 
(not necessarily optimaI), not too complex, not too biased, and robust 
(insensitive to the exact underlying model). The initially widely used 
method of limits has come under severe theoretical criticism (Brown & 
Cane, 1959; Herrick, 1967, 1969, 1970; Pollack, 1968), and it has been 
largely replaced by one or another variant of the up-and-down (or stair- 
case) method. The original method, apparently due to BekQy (1947) and 
Dixon and Mood ( 1948), was designed to use fixed step size to ascertain 
the 50% point on a distribution function (Brownlee, Hodges, & Rosen- 
blatt, 1953; Cornsweet, 1962; Wetherill, 1963; Wetherill & Lcvitt, 1965, 
Wcthcrill, Chen, & Vasudeva, 1966). Variahlc stcp size was carly proposcd 
and studied (Chung, 1954; Robbins & Munro, 1951 ) and is now com- 
monly used. Cornsweet ( 1962) and Smith ( 1961 ) suggested that by ran- 
domly interleaving two up-and-down procedures the subject will not detect 
the strategy of presentation, and Levitt ( 1968) suggested a nonrandom 
interleaving to test for the existence of sequential dcpcndencics. To csti- 
mate points other than 50% on a distribution function, transformed up- 
and-down methods have been proposed (Campbell, 1963; Cardozo, 1966; 
Heinemann, 1961; Levitt & Bock, 1967; Levitt & Treisman, 1969; Weth- 
erill & Levitt, 1965; Zwislocki, Maire, Feldman, & Rubin, 1958). 

Applications of these methods includc, among othcr studies, Adler and 
Dalland ( 1959) ; Bekisy (1 947) ; Blough ( 1955, 1958) ; Blough and 
Schrier ( 1963) ; Elliott, Frazier, and Riach ( 1962) ; Gourevitch, Hack, 
and Hawkins ( 1960) ; Levitt ( 1968) ; Levitt and Rabiner ( 1967) ; Symmes 
( 1962) ; and Zwislocki et al. ( 1958). 

When on-line computer control is available, much more complicated 
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adaptive proccdures can be entertained: Hall ( 1968) suggested placing 
the next signal at the current ML estimate, and Smith (1966) proposed 
a strategy that maximizes the information gained on each trial. A somewhat 
different adaptive procedure, based on the concepts of sequential testing, 
is Taylor and Creelman's (1967) PEST procedure, for which a computer 
program is available. 

For an excellent general survey of these methods see Levitt (undated, 
but not earlier than 1969), and for a complementary survey of their use 
in animal psychophysics see Blough ( 1966). 

V. NONSTATIONARY RESPONSE PROCESSES 

Differences in assumptions about the nature of the sensory-memory pro- 
cess and the resulting internal representation of the stimulus has been a 
major focus of the previous section and will be taken up again in Section 
V1. Whereas the impact of the response process on the observed behavior 
is generally acknowledged, it is often treated as a necessary evil-some- 
thing that merely clouds our view of the sensory systems. Others find the 
decision processes inherently interesting. Over the past 15 years a number 
of studies have attempted to clarify their nature and to develop an orga- 
nized theory for them comparable in scope to those of the sensory 
processes. 

The corresponding empirical investigations have centered around se- 
quential dependencies and the effect of stimulus presentation probability 
on the hit and false-alarm rate. The latter is closely related to questions 
about ROC curves. The emphasis on sequential effects is easily understood. 
With only one exception (Atkinson, 1963), all theories assume that the 
sensory processes are statistically stationary; thus, any evidence of nonsta- 
tionary behavior is interpreted as trial-by-trial changes in the decision-re- 
sponse process. The emphasis on how the response criterion is affected 
by a priori probability was stimulated in part by the glaring failure in both 
TSD and threshold models of the postulate that the criterion is set so as 
to maximize the expected payoff. 

Despite the rapid development of response theories, a number of empiri- 
cal factors are still not completely understood. We attempt to summarize 
the better-established empirical generalizations. Often, some of the earlier 
studies used conditions that, in retrospect, were far from optimum and 
hence the effects demonstrated in these studies are not impressive. It is 
to be hoped that the bootstrap phase is nearly over and that future work, 
utilizing more judicious experimental conditions, will obtain more sizable 
effects. 

A. Studies of Sequential Effects 

Although judgments in psychophysical tasks are often treated as if they 
arise from a Bernoulli process, it has long been known that this is, at best, 
an idealization. Preston (1936a,b) clearly established response depen- 
dencies in psychophysical data, and a number of later papers have repeated 
his basic finding. Senders and Soward (1952) present a good history of these 
studies as well as some data of their own. In the early 1950s, a number 
of papers on this topic were published, reporting studies that used mainly 
visual detection tasks. Verplanck, Collier, and Cotton (1952) reported a 
tendency to repeat the last response. Correlations among thc responses 
extended ovcr a period of about 1 min in their study. Similar cffects were 
also reported by Verplanck, Cotton, and Collier (1953) and Howarth and 
Bulmer ( 1956). Sequential dependencies using auditory detection were 
also demonstrated by Day (1956), Shipley ( 1961) and Speeth and 
Mathews (1961). Day also showed that the size of the sequential effect 
diminishes as a function of thc length of the interstimulus interval. Sincc 
about 1960, a number of studies have investigated various determinants 
of sequential effects and have contrasted experimental results with theoreti- 
cal models of the response process. 

Sequential dependencies arise naturally in models that postulate a deci- 
sion criterion that is updated from trial to trial. Among the models of this 
type are those of Atkinson (1963), Atkinson, Carterette, and Kinchla 
(1962), Dorfman and Biderman (1971), Kac (1962), Luce (1963b, 
1964), Bush, Luce, and Rose (1964), Norman (1962, 1964a), and 
Schoeffler (1965). The advantage of these models over purely empirical 
estimates of the sequential probability is that they require much less data 
in order to estimatc thc magnitudc of the effect. 

B. Size of the Sequential Effects 

Stating the size of a sequential effect is still largely a subjective matter. 
There simply is no standard way to record the results or for assessing the 
magnitude of the effects. The null hypothesis is that the occurrence of some 
response is a Bernoulli process with an unknown probability p. By com- 
puting various conditional probabilities, one may show that the occurrence 
of some response deviates significantly from the value p. A subjective ele- 
ment arises both in determining how large a deviation one believes is really 
important and in evaluating how much of the past history is needed in 
order to achieve the givcn deviation. For example, if the overall probability 
of a "yes" response is .5, and the conditional probability of a "ycs" re- 
sponse given a previous "yes" response is .6, then clearly a fairly interesting 
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sequential dependency has been uncovered. On the other hand, if one needs 
a sequence of five or six previous responses in order to achieve deviations 
of 10% from the overall mean, then because such sequences occur so infre- 
quently, the deviation is less important. No one has yet suggested a method 
for combining the size of the deviation and the length of the conditioning 
sequence into a single measure. Thus, it is frequently impossible to com- 
pare the magnitudes of the sequential effects in two different experiments, 
despite the fact that the authors used the same number of responses and 
conditionalized on very similar events. 

C. Generalizations about Sequential Dependencies 

Although the preceding remarks make clear why it is difficult to compare 
diierent studies, we nonetheless offer the following generalizations con- 
cerning response dependencies. Each conclusion is stated in terms of a 
single variable bccause there have bccn very few studies that provide infor- 
mation about potential interactions among variables. Sequential effects are 
as follows: 

1. small in simple auditory detection situations (Atkinson, 1963; Atkin- 
son & Kinchla, 1965; Cartcrctte, Friedman, & Wyman, 1966; Friedman, 
Carterette, Nakatani, & Ahumada, 1968a,b) ; 

2. possibly large in simple visual detection situations (Kinchla, 1964); 
however, the design of this study may mean it was really a probability 
prediction rather than a detection design, and it is well known that sequen- 
tial effects are large in probability prediction designs; 

3. relatively large in recognition situations (at least of intensity) 
(Kinchla, 1966; Tanner, HaIler, & Atkinson, 1967; Tanner, Rauk, & 
Atkinson,l970) ; 

4. smaller when feedback is given then when it is not (Atkinson & 
Kinchla, 1965; Kinchla, 1966; Tanncr, Hallcr, & Atkinson, 1967; Tanncr, 
Rauk, & Atkinson, 1970). 

Based in part on these generalizations, Tanner, Rauk, and Atkinson 
(1970) have attempted to state a fairly complete model dealing with these 
various factors. The following summary illustrates the general nature of 
models in this area. Given a stimulus presentation, the observer is assumed 
to compare it with whatever standard is available to him. For a sine wave 
in noise, the noise itself plays the role of the standard. In this case, very 
little memory is involved in the decision making, and, hence, the sequential 
effects are small. In experiments in which the task is to recognize the more 
intensc of two 1000-Hz tones, the basic decision process is treated as a 
comparison of thc stimulus presentation with a memory tracc, which is 
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influenced by the past presentations and so changes from trial to trial. The 
observer's response is assumed to result from a weighted combination of 
two tendencies: One is to repeat the response he made on the previous 
trial and the other is to report the signal labeled correct by the feedback 
that occurred on the preceding trial. Thcsc tendencies arc combined ac- 
cording to a lincar weight. If thcrc is no feedback, thc tendcncy to rcpeat 
the previous response is given all of the weight. Thus the model can ac- 
count for the smaller sequential effects observed with feedback. 

This model exhibits several interesting effects. One is sequential depen- 
dcncics (becausc the pattern of previous stimuli and responses influence 
the present decision). A second is a very interesting prediction about the 
effect of presentation probabilities on the response probabilities, a topic 
we take up in the next section. A third implication of this general view 
concerns the role played by a standard in a psychophysical judgmcnt task. 
Although relatively large sequential effects have becn found in the intensive 
discrimination task, Parducci and Sandusky ( 1970) report relatively small 
ones in an experiment having, as an explicit standard, a constant intensity 
signal preceding each trial. The view of memory introduced by Tanner 
et al. is rcminisccnt of adaptation lcvcl theory, HcIson (1964), a similarity 
which has been pursucd in papers by Parducci and Marshall (1962) and 
Parducci and Sandusky ( 1965). 

D. The Effect of a Priori Probability on Response Bias 

As we noted previously, thc original impetus for many of the adaptive 
models of response criteria was the attempt to specify how the subject's 
response changes as a function of values and costs and the a priori prob- 
ability of the stimulus alternatives. One of the early dramatic findings was 
that the change in the criterion as a function of a priori probability could 
be oppositc to that predicted by thc expected-value model. Kinchla (1966) 
and Tanncr et al. (1967) reported data in which thc observcr decreased 
his false-alarm rate when the a priori probability of the signal was in- 
creased. This finding is at odds with considerable previous data obtained 
in simple detection experiments. The crucial difference appears to be 
whcthcr or not thc subject is givcn feedback and his dcgrec of cxpcrience 
in these experiments. Naive subjects with no feedback invariably reduce 
their false-alarm rates as the signal probability is increased. With feedback, 
the opposite tendency is observed (Tanner et al., 1967). 

Although this finding is accounted for by the gencral model proposed 
by Tanner et al., another quite simple explanation of it can bc givcn. Sup- 
pose that the observer is trying to maintain an equal number of yes and 
no responses in the experimental situation. A tendency to equalize the fre- 
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quency of all the available responses is a well-known property of many 
judgment tasks, as was first demonstrated by Arons and Irwin (1932). If 
one attempts to achieve this goal by dividing a sensory scale in such a 
way that half the responses will be yes and the other half no, then the 
criterion must be increased when the signal is presented more frequently 
(since more drawings are presented from the signal distribution) and so 
the false-alarm rate will decrease. Note that this view is consistent with 
a stationary observer, one whose response dependencies do not change 
from trial to trial. For more complete discussions of the matching hypothe- 
sis to account for the change in the hit and false-alarm rate caused by 
altering the a priori probabilities, see Creelman and Donaldson (1968), 
Dorfman (1969), Parks (1966), and Thomas and Legge (1970). 

Tanner et al. argued that both the change in false-alarm rate with a 
priori probability and the large sequential effects support their view that 
a memory process is heavily involved in these kinds of tasks. Parducci 
and Sandusky (1970), however, exhibit this change in false-alarm rate 
with a priori probability without finding any sequential effects. Thus, pre- 
sumably, the presence of the standard in the Parducci and Sandusky experi- 
ment minimizes the changes in criterion on a trial by trial basis, but none- 
theless the criterion did change systematically in response to changes in 
a priori probability. Further work is needed to clarify this general area. 
Unfortunately, the next series of studies must concentrate on various inter- 
actions among the major variables. 

VI. THEORIES FOR FREE RESPONSE DATA 

Although we do not wish to contend that the setting for all laboratory 
measurements must simulate natural ones, one should realize that the study 
of detection and discrimination by means of fixed interval (FI )  designs 
is highly artificial. Most signals in nature occur at unpredictable times, and 
one is seldom quizzed in an interval just following a potential signal about 
whether or not one seemed to be present. The reason for using a F I  proce- 
dure is that it allows one to avoid several thorny questions concerning the 
temporal properties of the detection process. It is exactly these questions 
that one must face in trying to extend the analysis of a detection or  discri- 
mination mechanism to more practical and realistic situations. 

A. A Methodological Note 

In all free response (FR)  experiments, an attempt is made to schedule 
signal presentations so that the subject is unable to predict their arrival. 

The complete achievement of this goal is, perhaps, more subtle than is 
often realized. In any event, the schedules employed in some of the studies 
do not achieve the desired ends and, in fact, should strongly reinforce be- 
havior that is highly nonuniform over time. Because this problem has not 
been discussed explicitly in many of the papers and because it is important, 
the following remarks seem in order. 

Probably because of ease of programming, the most common presenta- 
tion schedule is the discrete approximation to the rectangular (uniform) 
distribution over a fixed interval. For example, with an interval of 100 
sec, signals might be presented with equal probability at each of the second 
marks of the 100 sec after the preceding signal. The mean time to the 
next signal is approximately 50 sec, and there is considerable randomness 
in the time of presentation. The difficulty with this schedule is that the con- 
ditional density of the signal is not uniform throughout the interval: Given 
that it has failed to occur up to some point in time, the probability that 
it will occur in the next second is a monotonic increasing function of the 
duration of the wait. In particular, the probability that it will occur in the 
first interval is 1/100, whereas the probability that it will occur in the 
last interval, given that it has not occurred in any of the previous ones, 
is 100 times as great. The potential bias that can result from this depends 
upon the degree to which the subject can estimate when the last signal 
occurred, and so it will interact with signal level. Even if no bias is evident 
at low intensities, this may not be true for higher intensities. It is clear 
that, in some circumstances, subjects make use of this information and, 
in fact, in a reaction time experiment by Nickerson (1967), the number 
of false anticipations increased monotonically with the wait from the warn- 
ing light. 

To avoid this problem and so the possibility of encouraging subjects 
to adopt nonhomogeneous response strategies, one should use the correct 
temporal analogue to uniform uncertainty, namely the Poisson process in 
which the times between successive events are independent and have a 
common exponential distribution. A crucial property of this distribution 
is the fact that the probability of an event occurring in the next instant 
in time is independent of how long it has been since the last event. Put 
another way, the conditional density of a signal occurring is constant. Ex- 
perimentally, the major difficulty in using this distribution is that successive 
events are often quite close together in time, and so it becomes difficult 
to distinguish which event caused a later response (see Luce & Green, 
1970). With a low signal rate, this is rarely a problem, and so it is unfortu- 
nate that the exponential schedule (or its discrete analogue, the geometric 
distribution) is seldom used in vigilance tasks, for the bias introduced by 
the uniform distribution may be considerable. 
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B. Temporal Partitioning 

Although FI designs are special cases of FR ones, most analyses have 
attemptcd to rcduce FR data to FI models. In practice, the motivation 
has been largely expediency, not a belicf that thc organism actually quan- 
tizes time and so is a kind of sample data system. If the latter were actually 
true and if we could divide time so as to agree with the natural quanta, 
then it would be perfectly rcasonablc to treat thc FR situation as a sc- 
quencc of yes-no experimcnts. Although the hypothcsis that organisms 
quantize time has existed Tor some time (e.g., Stroud, 1955; and White, 
1963), Kristofferson ( 1965, 1966, 1967a,b, 1969) is the only contempo- 
rary psychophysicist who argues seriously for it. His evidcncc consists of 
the numerical agreement of three parameters estimated from successive 
discrimination and two reaction experiments. From these data, he estimates 
the time quantum to be about 50 msec, which it should be noted is about 
half the alpha rhythm pcriod. Although both of the present authors arc 
skeptical, as are others (for example, Carterette, 1969), it is important 
to realize how crucial this unresolved point is for finding the appropriate 
generalization of present detection models. 

The simplest practical procedure for partitioning time, one often fol- 
lowed in the analysis of vigilance data and firs1 adopted by Broadbent and 
Gregory (1963) and Mackworth and Taylor (1963), divides time into 
nonoverlapping intervals of equal duration, usually about 1 sec, although 
other durations have been used both by the original authors and by sub- 
sequent investigators. They estimate the hit probability as the relative fre- 
quency of positive responses in the interval following the signal and esti- 
mate the false-alarm probability as the relative frequency of positive 
responses in all other intervals. The interval is chosen to be sufficiently 
large so that even the slowest responses are not misclassified as false alarms. 
Because the density of false alarms is usually quite low, there is little 
chance of making the opposite misclassification. These probabilities are 
then used in a TSD yes-no analysis to estimate d' and p. 

Egan, Greenberg, and Shulman ( 1961 ) and Watson and Nichols ( 1966) 
carried out a somewhat more subtle analysis. In  their experiments the num- 
ber of false positive responses was at least an order of magnitude higher 
than usually is encountered in vigilance experiments; hence, the problem 
of misclassifying false alarms as hits becomes much more serious, and so 
requires more care. They constructed empirical histograms showing the 
frequency of response following the onset of a signal. Naturally, there is 
a high response rate immcdiately following signal onset; this is especially 
so with loud signals. By 1 or 2 sec after the signal interval, this rate returns 
to a fairly stable value, which they treated as a quantity similar to the 

false-alarm probability in the F I  design. Their analogue of the hit probabil- 
ity in the FI design is the proportion of responses occurring between the 
signal onset and the return to the base rate. They then proceeded as follows: 
Suppose thc observer "divides time into a succession of subjective inter- 
vals, each of duration T,. It will be considered that each of thcsc subjcctive 
intervals implicitly defines a trial for the listener, and that he makes a deci- 
sion after each interval." Obviously the observed rate is then proportional 
to the probability of each response, the constant of proportionality being 
T,.  The ROC data gcncralized by varying the subjcct's criterion yields 
an cstimatc of d' which is close to the FI onc, e.g., 1.29 and 1.55. Egan 
et al. pointcd out two major defccts with this proccdurc. As the subject 
relaxcs his critcrion, the data suggcst an apparcnt increase in thc detection 
index, and the method does not lead to an independent estimate of the 
subject's criterion. 

Another important approach involving temporal partitioning is based 
on scqucntial decision making. Onc class of empirical studics allows the 
observer to determine how many intervals he observes before making a 
response (Swets & Green, 1961; Swets & Birdsall, 1967). And one class 
of theoretical studies of reaction time assumes that the subject partitions 
time, observes a random variable in each interval, and arrives at a response 
dccision by mcans of a sequential dccision procedure (Carterette, 1966; 
Edwards, 1965; La Berge, 1962; Laming, 1968; Stone, 1960). 

C. Vigilance 

A vigilance task is, by definition, a frcc response one in which thc signal 
rate is low (perhaps one pcr minute) and the total obscrvation pcriod is 
long (an hour or two); a general reference is Buckner and McGrath 
(1963). A major empirical generalization from a long history of research 
in this area is that there is a very marked decrement in performance as 
the period of the watch increases (a  good summary of these data is Jerison 
and Pickett, 1963 ) . 

Broadbent and Gregory (1963) applied TSD to the data simply by 
dividing the F R  situation into I-sec intervals, as already explained. Assum- 
ing the signal and noise distributions are both Gaussian, with equal vari- 
ance, they estimated both d' and p. The surprising finding was that al- 
though p changed during the course of the watch, d' appeared to remain 
constant. They argued that the decline in performance was, in fact, simply 
a shift on the part of the observer to a more conservative response criterion. 
They argued from the apparent constancy of d' that sensitivity is indepen- 
dent of the period on the watch. At about the same time, however, Mack- 
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worth and Taylor (1 963) applied TSD to a continuous visual display and 
found a systematic decline in d' as a function of watch time. It appears 
that the modality of the display plays an important role in whether or not 
a decline in sensitivity is observed. Apparently the decline is related to 
some sort of attentiona1 variable and may be related to observing responses, 
as argued by Loeb and Binford (1  964), Jerison, Pickett, and Stenson 
(1965), and Jerison ( 1967). In auditory experiments, where no orienting 
or observing responses are required, the data show little change in sensi- 
tivity but large changes in criterion as a function of the time in the watch 
(Broadbent & Gregory, 1965; Davenport, 1968; Levine, 1966; Loeb & 
Binford, 1964; Mackworth, 1968; Hatfield & Soderquist, 1970). 

Mackworth (1965) tried a variety of different temporal intervals to  esti- 
mate the hit and false alarm rate. She concluded that a 30-fold change 
in the size of the interval has little effect upon the conclusion one draws. 
Although such stability is impressive, it must be remembered that in vigi- 
lance situations the false-alarm rate is extremely low. Indeed, in many of 
the experiments, when something like 10' responses are counted as hits, 
the number of false alarms is of the order of 10. With such tiny probabil- 
ities, it is hardly surprising that the size of the interval used to estimate 
them has Iittle effect on the estimate. A more serious problem, one recog- 
nized by practically all investigators, is the stability of the estimates. Given 
the paucity of false alarms, the confidence intervals on both d' and P are 
enormous. Also, as Mackworth and Taylor (1963) pointed out, the esti- 
mates depend heavily on the assumed form of the distribution. This is not 
too serious as long as we only wish to compare parameter estimates within 
similar conditions of an cxperirnent, but the cxtrapolation of these parame- 
ter estimates to other situations, especially to FI ones, is indeed hazardous. 
This point, along with some other cautions about thc overacceptance of 
TSD, is well expressed in Jerison's paper ( 1967). 

D. A Continuous Free-Response Model 

Luce (1  966) proposed an approach to the analysis of free response data 
which does not involve any arbitrary division of time into decision intervals. 
The most striking feature of this approach is that it redefines the basic 
data of a frce response experiment as a family of temporal distributions: 
the distribution of times from a signal to the ncxt rcsponsc, the distribution 
of times between successive responses given that no signal has intervened, 
and so forth, What a thcory of frcc-response bchavior must account for 
are these temporal distributions, rather than some artificially constructed 
quantitics analogous to the hit and falsc-alarm rate of an FI cxpcrimcnt. 
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Such notions as the hit and false-alarm probabilities are, at best, uncertain 
concepts because, when false alarms can occur and when the time between 
a stimulus initiating a response and its response is not constant, it is impos- 
sihlc to be sure what preceding event caused a given rcsponse. 

The original model has undergone considerable experimental testing and 
modification in Green and Luce ( 1967, 197 1 ) and Luce and Green ( 1970, 
1971). The present vcrsion can he formulated in terms of three main ideas. 
First, as in thc countcr models (Section 111,G), the intensity of a signal 
is assumed to be transduced and ultimately represented at the observer's 
decision ccnter as a temporal pulse train of (perhaps, ncural) events whose 
average rate is assumed to increase with signal intensity. A more specific 
assumption, which ultimately may have to be abandoned, is that the trans- 
duction of a signal of constant intensity is a Poisson process. In this case, 
the pulse rate, which is the reciprocal of the expected interpulse time, com- 
pletely characterizes the process. The pulse rate due to noise P and that 
due to signal-plus-noise p play roles somewhat similar to /3 and d' in 
TSD. 

The second assumption is that this pulse train is subjected to a decision 
process which detcrmincs when and which response is to bc activated. The 
timc takcn to rcach such a decision, which dcpcnds upon thc pulse ratc, 
is called the sensory-decision latency. A variety of decision rules in addition 
to counter models are possible. Initially, Green and Lucc investigated the 
simplest possible rule, namcly that the arrival of each pulse activates a rc- 
sponse. (If so, these theoretical pulses are surely not the same as the 
peripheral ones which, evcn in the absence of an auditory signal, often 
have rates of about 10 per second.) Ultimately, they showed that this rule 
is untenable (see the next subsection). The next simplest model, still not 
involving a time partition, assumes that the momentary pulse rate (and 
hence, by the first assumption, the intensity of the signal) is estimated from 
the reciprocal of the interarrival times (IAT) of the pulses and that certain 
sums of TATS are compared with a criterion or with another sum of IATs, 
much as likelihood ratios arc compared with a criterion or with each other 
in TSD. Such rules can be applied to a variety of psychophysical designs, 
including all the usual FI ones as well as free response types (Luce & 
Green, 1972 j . 

The third and last feature of the theory concerns delays introduced by 
the afferent and motor systems. The sum of all these is called the residual 
latency. This latency is assumed to convolve independently with thc dcci- 
sion latency to produce the observed response time. The only assumption 
made about the residual latency is that it is a bounded random variable. 
According to the theory, reaction times to intense signals are approximately 
the residual latencies, so the bound is probably about 200-300 msec. Aside 
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from being bounded, the distribution of residual times is not otherwise con- 
strained in the theory; undoubtedly, it depends on the input channel and 
on the exact response required. 

The key role of the boundedness assumption is this: any observable 
density that is a convolution of a decision latency whose tail is exponcntial 
with a residual latency has a tail (beyond the bound) that is entirely dic- 
tated by the tail of the decision denslty. This is of great interest because 
the tail of the decision latency reflects something of the decision rule and 
the interpulse density. With weak signals, these tails represent an appre- 
ciable fraction of all the data, and so they can bc used to test hypotheses 
about the nature of the decision proccss and to cstimate mean pulse rates. 
For example, in Green and Luce (1967) and Luce and Green (1970) 
certain signal-response and response-response densities were shown to have 
approximately exponential tails; from these the pulse rates v and p were 
estimated, p/v was shown to increase smoothly with S/N in decibels, and 
criterion changes altered both in a way such that ,p.-" is approximately 
constant. 

A basic difficulty in applying this type of analysis to F R  data arises 
whcn two signals occur close together, in which case the response to the 
second may be initiated before the response to the first is completed. This 
is especially an issue when the signal presentation schedule of the signals 
is Poisson, since short intersignal times are common. Using schedules 
othcr than thc Poisson for the signal prcsentation greatly complicates the 
mathematical analysis and is bound to invite nonhomogencous strategies 
on the part of the observer, as we alrcady discussed.) Some simplc assump- 
tions were explored and rejected, and more complex ones have so far 
proved mathematically intractable. This led to consideration of experiments 
in which frccdom not to respond was retained, but in which multiple re- 
sponscs were avoidcd; wc turn to thcsc ncxt. 

E. Related Reaction Time Experiments 

For the stochastic models of the detection process just outlined, a natural 
source of information about them is a reaction-time (RT) experiment with 
exponentially distributed foreperiods and weak signals. Although the litera- 
ture on simple RT is enormous, that having to do with very weak signals 
is quite small. Yet such signals are admirably suited to study the decision 
process since they gencrate processing delays that arc appreciable with re- 
spect to other lags in the system. In a sense, weak signals serve as a micro- 
scope to provide a more detailed view of the sensory part of the perceptual 
system. The nature of these delays is predicted in detail by the stochastic 
model. Green and Luce (1971) and Luce and Green (1970, 1972) have 

pursued this approach. They show an increase in R T  of over an order 
of magnitude as signal-to-noise ratio is decreased. In addition, sizable 
effects were observed when the criterion of the subject was altered and 
some dependence on mean signal wait was also noted. 

Using the assumptions stated in the preceding section and assuming that 
each pulse initiates a response, they employed Fourier transforms of the 
observed RT distribution to try to deconvolve the sensory decision process 
from the remaining residual distribution. They found that the calculated 
residual distribution was bounded, as predicted by the theory, but was 
negative for a short period after the bound (which, of course, is impos- 
sible). Moreover, the mean of this inferred residual distribution was about 
100 msec longer than the response tinies observed in simple RT to very 
strong signals. This is inconsistent with their model since if a bounded 
number of IATs enter into any response decision, as would be the case 
with a finite buffer store, the time for processing the pulse train vanishes 
as p -+ m; hence the RT to a very strong signal should be identical to 
the residual distribution. Although some aspect of that model, most likely 
the assumption that single pulses activate responses, is surely incorrect, 
the authors believe that the approach has considerable promise. 

Since the observed RT distribution for strong signals approximates the 
residual latency distribution, and the RT distribution for weak and moder- 
ate signals is the convolution of the corrcsponding decision latency with 
this RT distribution for strong ones, there is no reason to expect this con- 
volution to have any simple mathematical form. The extraction of informa- 
tion from RT distributions is therefore a matter of considerable delicacy 
and probably requircs more complicatcd techniques of analysis than has 
been traditionaIly assumed. 
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